WebTo address this problem, we propose Dataset Condensation with Contrastive signals (DCC) by modifying the loss function to enable the DC methods to effectively capture the differences between classes. In addition, we analyze the new loss function in terms of training dynamics by tracking the kernel velocity. Furthermore, we introduce a bi-level ... WebDataset Condensation with Contrastive Signals Recent studies have demonstrated that gradient matching-based dataset sy... 0 Saehyung Lee, et al. ∙ share research ∙ 2 years ago Removing Undesirable Feature Contributions Using Out-of-Distribution Data Several data augmentation methods deploy unlabeled-in-distribution (UID)...
ICML 2024
WebSep 12, 2024 · In this work, we analyse the contrastive fine-tuning of pre-trained language models on two fine-grained text classification tasks, emotion classification and sentiment analysis. We adaptively embed class relationships into a contrastive objective function to help differently weigh the positives and negatives, and in particular, weighting ... WebProceedings of Machine Learning Research citi human research basic course
ICML 2024
WebTo address this problem, we propose Dataset Condensation with Contrastive signals (DCC) by modifying the loss function to enable the DC methods to effectively capture the differences between classes. In addition, we analyze the new loss function in terms of training dynamics by tracking the kernel velocity. Furthermore, we introduce a bi-level ... WebJan 29, 2024 · Photo by AJ Jean on Unsplash. The topic of data-efficient learning an important topic in Data Science and is an active area of research. Training large models … WebNon-Contrastive Unsupervised Learning of Physiological Signals from Video Jeremy Speth · Nathan Vance · Patrick Flynn · Adam Czajka High-resolution image reconstruction with latent diffusion models from human brain activity Yu Takagi · Shinji Nishimoto RIFormer: Keep Your Vision Backbone Effective But Removing Token Mixer citihub hotel malang